# $$\text{CauchyVariate}$$¶

You can use the $$\text{CauchyVariate}$$ function to calculate one or more random variates in a Cauchy-Lorentz distribution.

You can use the \cauchyv backslash command to insert this function.

The following variants of this function are available:

• $$\text{real } \text{CauchyVariate} \left ( \text{<location>}, \text{<}\gamma\text{>} \right )$$

• $$\text{real matrix } \text{CauchyVariate} \left ( \text{<number rows>}, \text{<number columns>}, \text{<location>}, \text{<}\gamma\text{>} \right )$$

Where $$x$$, $$location$$, and $$\gamma$$ are scalar values representing the value of interest, the location or offset, and the scale term respectively. Note that this function is defined over the range $$\gamma > 0$$ and will generate a runtime error, return NaN or a matrix of NaN for all other values.

The four parameter version, which includes $$\text{<number rows>}$$ and $$\text{<number columns>}$$ fields, returns an real matrix returning random deviates. The two parameter version returns a single value.

This function calculates random variates using transformation method based on the definition of the Cauchy-Lorentz quantile function:

$\text{CauchyVariate} \left ( l, \gamma \right ) = x _ 0 + \gamma \tan \left [ \pi \left ( p - \frac{1}{2} \right ) \right ]$

where $$p$$ is a random variate in a uniform distribution over the range $$0 < p < 1$$, and $$x _ 0$$ is the location term.

Figure 115 shows the basic use of the $$\text{CauchyVariate}$$ function. Figure 115 Example Use Of The CauchyVariate Function